

Technical Note

Free RoHS

No.12015EAT03

0.70 Ω (Typ.)

0.70 Ω (Typ.)

-25°C to +85°C

0µA (Typ.)

±3.0%

System Lens Driver Series for Mobile Phone Cameras

2-wire serial interface Lens Driver for Voice Coil Motor (I²C BUS compatible)

BH6456GUL

General Description

The BH6456GUL motor driver provide 1 Full on Driver a H-bridge.

This lens driver is offered in an ultra-small functional lens system for use in an auto focus system using a Piezo actuator.

Features

- Ultra-small chip size package .
- Low ON-Resistance Power CMOS output.
- Built-in 15MHz Oscillator
- Built-in UVLO (Under Voltage Locked Out: UVLO).
- Built-in TSD (Thermal Shut Down) circuit.
- Standby current consumption: 0µÅ Typ.
- 1.8V can be put into each control input terminal

Applications

- For Auto focus of camera module
- Digital still camera
- Camera Modules
- Lens Auto focus
- Web Cameras

Typical Application Circuit(s)

•Key Specifications

- Pch ON Resistance:
- Nch ON Resistance:
- Standby current consumption:
- 15MHz OSC:
- Operating temperature range:

Package(s)

VCSP50L1

W(Typ.) x D(Typ.) x H(Max.) 1.95mm x 1.00mm x 0.55mm

Fig.1 Block Diagram

OProduct structure : Silicon monolithic integrated circuit OThis product is not designed protection against radioactive rays

Absolute maximum ratings (Ta=+25°C)

Parameter	Symbol	Limit	Unit
Power supply voltage	VCC	-0.3 to +4.5	V
Motor power supply voltage	VM	-0.3 to +5.5	V
Power save input voltage	VPS	-0.3 to VCC+0.3	V
Control input voltage	VIN	-0.3 to VCC+0.3	V
Power dissipation	Pd	530* ¹	mW
Operating temperature range	Topr	-25 to +85	°C
Junction temperature	Tjmax	+125	°C
Storage temperature range	Tstg	-55 to +125	°C
H-bridge output current	lout	-500 to +500 ^{*2}	mA

*¹Conditions: mounted on a glass epoxy board (50mm × 58mm × 1.75mm; 8 layers). In case of Ta>25°C, reduced by 5.3 mW/°C.
*²Must not exceed Pd, ASO, or Tjmax of 125°C.

●Operating Conditions (Ta= -25°C to +85°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	VCC	2.3	3.0	3.6	V
Motor power supply voltage	VM	2.3	3.0	4.8	V
Power save input voltage	VPS	0	-	VCC	V
Control input voltage	VIN	0	-	VCC	V
2-wire serial interface transmission rate	SCL	-	-	400	kHz
H-bridge output current	lout	-	-	±400 ^{*3}	mA

А

В

OUTA

^{*3}Must not exceed Pd, ASO.

Package Outline

55MA

Top View

Side View

1	2	3	4
VM	OUTB	SCL	SDA

VCC

PS

•Pin Arrangement (Top View)

Fig.3 Pin Arrangement (Top View)

GND

Bottom View

Fig.2 VCSP50L1 Package (Unit: mm)

Electrical Characteristics (Unless otherwise specified Ta=25°C, VCC=3.0V)

Parameter	Sympol		Limit		Unit	Conditions
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Overall						
Circuit current during standby operation	ICCST	-	0	1	μA	PS=L
Circuit current	ICC	-	3.2	6.4	mA	PS=H, SCL=400kHz, OSC active
UVLO						
UVLO voltage	VUVLO	1.8	-	2.2	V	
Power save input						
High level input voltage	VPSH	1.5	-	VCC	V	
Low level input voltage	VPSL	0	-	0.5	V	
High level input current	IPSH	15	30	60	μA	VINH=3.0V
Low level input current	IPSL	-3	0	-	μA	VINL=0V
Control input(SDA,SCL)						
High level input voltage	VINH	1.5	-	VCC	V	
Low level input voltage	VINL	0	-	0.5	V	
Low level output voltage	VOL	-	-	0.4	V	IIN=3.0mA (SDA)
High level input current	IINH	-10	-	10	μA	Input voltage=VCC
Low level input current	IINL	-10	-	10	μA	Input voltage=GND
H Bridge Drive	-					
	RONP	-	0.7	1.0	Ω	
Output ON-Resistance	RONN	-	0.7	1.0	Ω	
Cycle length of sequence drive	TMIN	10.35	10.67	11.00	μS	^{*4} Built in CLK 160 count
Output rise time	Tr	-	0.1	0.8	μS	^{*5} 7.5Ω load condition
Output fall time	Tf	-	0.02	0.4	μS	^{*5} 7.5Ω load condition

The time that 1 cycle of sequence drive at the below setting of 2-wire serial data ta[7:0] = 0x13, brake1[7:0] = 0x03, tb[7:0] = 0x1E, brake2[7:0] = 0x6B, osc[2:0] = 0x0 Output switching wave

*5

●2 wire Serial Interface Register detail

Wr	ite mode : S	0 0	0	1 1	0	0 0 A PS T	2 T1 T0 W3 W	2 W1 W0 A D	7 D6 D5 D4 D3	D2 D1 D0 A	P		Master is output
						l Write				l Up -	date		Slave is output
Re	ad mode : S	0 0	0	1 1	0	0 0 A PS T	2 T1 T0 W3 W	2 W1 W0 A S	0 0 0 1	1 0 0 1	A D7 D6 D5	D4 D3 D2 D1	D0 nA P
	Write Read S=Start condition A=Acknowledge PS=Power save W3~W0=Resister address P=Stop condition nA=not Acknowledge T2~T0=Test bit D7~D0=Data												
Tres	Address	W3	W2	W1	W0	D7	D6	D5	D4	D3	D2	D1	D0
	0H	0	0	0	0	HiZE	initB[2]	initB[1]	InitB[0]	init	START	MODE	dir
	1H	0	0	0	1	ta[7]	ta[6]	ta[5]	ta[4]	ta[3]	ta[2]	ta[1]	ta[0]
	2H	0	0	1	0	brake1[7]	brake1[6]	brake1[5]	brake1[4]	brake1[3]	brake1[2]	brake1[1]	brake1[0]
	3H	0	0	1	1	tb[7]	tb[6]	tb[5]	tb[4]	tb[3]	tb[2]	tb[1]	tb[0]
	4H	0	1	0	0	brake2[7]	brake2[6]	brake2[5]	brake2[4]	brake2[3]	brake2[2]	brake2[1]	brake2[0]
	5H	0	1	0	1	cnt[7]	cnt[6]	cnt[5]	cnt[4]	cnt[3]	cnt[2]	cnt[1]	cnt[0]
	6H	0	1	1	0	cnt[15]	cnt[14]	cnt[13]	cnt[12]	cnt[11]	cnt[10]	cnt[9]	cnt[8]
	7H	0	1	1	1	ра	pb	osc[2]	osc[1]	osc[0]	cntck[2]	cntck[1]	cntck[0]
	8H	1	0	0	0	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TEST
	9H	1	0	0	1	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TEST
	AH	1	0	1	0	TEST	TEST	TEST	TEST	TEST	TEST	EXT	initEXT
	BH	1	0	1	1	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TEST
	СН	1	1	0	0	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TEST

●2 wire Serial Interface Action Timing Characteristics (Unless otherwise specified, Ta=-25 to +85°C, VCC=2.3 to 4.8V)

Deremeter	Symbol	FA	AST-MOD	E ^{*6}	STAN	IDARD-M	ODE ^{*6}	Unit
Parameter	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
SCL frequency	fSCL	-	-	400	-	-	100	kHz
Data clock high time	tHIGH	0.6	-	-	4.0	-	-	μs
Data clock low time	tLOW	1.3	-	-	4.7	-	-	μs
Start condition hold time	tHD:STA	0.6	-	-	4.0	-	-	μs
Start condition setup time	tSU:STA	0.6	-	-	4.7	-	-	μs
Data hold time	tHD:DAT	0	-	0.9	0	-	3.45	μs
Data setup time	tSU:DAT	100	-	-	250	-	-	ns
Stop condition setup time	tSU:STO	0.6	-	-	4.0	-	-	μs
BUS release time	tBUF	1.3	-	-	4.7	-	-	μs
Noise removal valid period	tl	0	-	50	0	-	50	ns

Standard-mode and Fast-mode 2-wire serial interface devices must be able to transmit or receive at that speed.

The maximum bit transfer rates of 100 kbit/s for Standard-mode devices and 400 kbit/s for Fast-mode devices

This transfer rates is provided the maximum transfer rates, for example it is able to drive 100 kbit/s of clocks with Fast-mode.

●2 wire Serial Interface Data timing

Fig.4 Serial data timing

Fig.5 Start stop bit timing

Recommend to power supply turning on operation timing

Parameter	Symbol	Recon	on limit	Unit		
Farameter	Symbol	Min.	Тур.	Max.	Unit	
PS input H voltage set-up time	TPS	1	-	-	us	
2-wire serial interface input data set-up time	tl2C	1	-	-	us	

Sequence of data input timing to power supply

Driving wave setting

O The structure of the driving wave for SIDM

1cycle=(ta+1)+brake1+tb+brake2

^{*1} The state at A or B and C is HiZ.

 *2 At mode=0,the output logic is a setting of a short brake.

dir(address : OH,D2)	1	2	Note		
0	OUTA	OUTB	Move to the direction of Macro		
1	OUTB	OUTA	Move to the direction of ∞		

Driving wave is set by the 4 parameters of ta / brake1 / tb / brake2. osc period is set by the osc(Internal CLK basic cycle setting).

- ta : On section is (ta +1-1) = ta counts for cw(ccw) state.
- brake1 : On section is (brake1 -1) count for short brake state.
- tb : On section is (tb1 -1) count for ccw(cw) state.
- brake2 : On section is (brake2 -1) count for short brake state.

(Ex.) In case of setting 1 cycle = 10.67μs, ta = 1.27μs, brake1 = 0.13μs, tb = 1.93μs, brake2 = 7.07μs. osc[2:0](= Basic cycle setting) = 3'b000(= Basic cycle = 66.67ns), and ta / brake1 / tb / brake2 setting below;

ta[7:0] = 0x13	= 19 count	\rightarrow ON section = 19+1-1= 19 count
brake1[7:0] = 0x03	= 3 count	\rightarrow ON section = 2 count
tb[7:0] = 0x1E	= 30 count	\rightarrow ON section = 29 count
brake2[7:0] = 0x6B	= 107 count	\rightarrow ON section = 106 count

O Driver function table

Sequence setting

mode = 0, $\operatorname{osc} = 0x0 \operatorname{or} \operatorname{osc} \neq 0x0$ and $\operatorname{HiZE} = 0$

	Ι	Π	Ш	IV	V	VI	VII	VIII
output①	HiZ	Н	HiZ	L	L	L	L	L
output [®]	L	L	L	L	HiZ	Н	HiZ	L
mode	HiZ	CW	HiZ	Short brake	HiZ	CCW	HiZ	Short brake

mode = 0, $\operatorname{osc} \neq 0x0$ and HiZE = 1

	Ι	Π	Ш	IV	V	VI	VI	VII
output(1)	HiZ(66.67ns ec)→H	Н	HiZ(66.67ns ec)→L	L	L	L	L	L
output2	L	L	L	L	HiZ(66.67ns ec)→H	Н	HiZ ^{*3}	L
mode	HiZ(66.67ns ec)→CW	CW	HiZ(66.67ns ec)→Short brake	Short brake	HiZ(66.67ns ec)→CCW	CCW	HiZ ^{*3}	Short brake

*3 The output ② status of VII dosen't become from HiZ(66.67nsec) to Low.It is outputted HiZ.

mode = 1, osc = 0x0 or osc $\neq 0x0$ and HiZE = 0

	Ι	Π	Ш	IV	V	VI	VI	VII
output①	HiZ	Н	HiZ	HiZ	L	L	L	HiZ
output@	L	L	L	HiZ	HiZ	Н	HiZ	HiZ
mode	HiZ	CW	HiZ	HiZ	HiZ	CCW	HiZ	HiZ

mode = 1, $osc \neq 0x0$ and HiZE = 1

	Ι	Π	Ш	IV	V	VI	VII	VIII
output(1)	HiZ(66.67ns ec)→H	Н	HiZ	HiZ	HiZ(66.67ns ec)→L	L	L*4	HiZ
output2	L	L	L(66.67nsec)→HiZ	HiZ	HiZ(66.67ns ec)→H	Н	HiZ	HiZ
mode	HiZ(66.67ns ec)→CW	CW	HiZ	HiZ	HiZ(66.67ns ec)→CCW	CCW	HiZ	HiZ

*4 The output ① status of VII dosen't become from Low (66.67nsec) to HiZ .It is outputed Low.

Truth table of Pa and Pb

sequence	ра	pb	OUTA	OUTB	Function mode
OFF	0	0	Z	Z	STOP
OFF	0	1	L	Н	CCW
OFF	1	0	Н	L	CW
OFF	1	1	L	L	Short brake
ON	Х	х	-	-	Follow with the sequence

ONormal sequence

Setting ta[7:0], brake1[7:0], tb[7:0], brake2[7:0], osc[2:0], HiZE, pa, pb, cntck[2:0], cnt[15:0]

BH6456GUL

Olnitial sequence

Setting ta[7:0], brake1[7:0], tb[7:0], brake2[7:0], osc[2:0], HiZE, pa, pb, cntck[2:0], cnt[15:0], initB[2:0]

Stop squence

OSTOP sequence

It changes to the next state after short brake 16.7μ sec(typ) when the state transition shown in the following while the sequence is operating is done.

- When Initial sequence ∞ direction ends
- · When Initial sequence ends
- · When normal sequence ends
- When dir bit signal reversing input is done at START bit = H
- · When initial sequence cancels
- When normal sequence cancels
- When the normal sequence interrupts at an initial sequence

O Output rise, fall waveform

A voltage = (VM voltage) – (Simulation DC output current at the only Resistance load) × (Upper side output On-R)

```
B voltage = (Simulation DC output current at the only Resistance load) × (Lower side output On-R)
```

```
(Ex.) In case, the load is Resistance element = 2\Omega, capacity element = 0.033\muF
25°C, VM=3V, Upper side output On-R = 1\Omega, Lower side output On-R = 1\Omega
```

A voltage = (VM voltage) – ((VM voltage) \div (Load (R)+ Total ON-R)) × (Upper side ON-R) = $3V - (3V \div (2\Omega + (1\Omega + 1\Omega))) \times 1\Omega$ = 2.25V

B voltage = ((VM voltage) \div (Load (R)+ Total ON-R)) × (Lower side ON-R) = $(3V \div (2\Omega + (1\Omega + 1\Omega))) \times 1\Omega$ = 0.75V

Register detail

ORegister catalogue

Bit	BIT Name	Function
addres	s : 0H	
D0	dir	Output direction setting while normal sequence
D1	MODE	Mode of brake1/brake2 setting for initial/normal sequence
D2	START	Start setting for normal sequence
D3	init	Start setting for initial sequence
D4	Initb[0]	Macro direction setting while initial sequence[0]
D5	Initb[1]	Macro direction setting while initial sequence [1]
D6	Initb[2]	Macro direction setting while initial sequence [2]
D7	HiZE	Dead time setting (Lo: 1 cycle of osc[2:0] setting, Hi: Internal CLK 1 cycle (typ 66.67nsec)
addres	s : 1H	
D0	ta[0]	Drive waveform setting[0] ta
D1	ta[1]	Drive waveform setting[1] ta
D2	ta[2]	Drive waveform setting[2] ta
D3	ta[3]	Drive waveform setting[3] ta
D4	ta[4]	Drive waveform setting[4] ta
D5	ta[5]	Drive waveform setting[5] ta
D6	ta[6]	Drive waveform setting[6] ta
D7	ta[7]	Drive waveform setting[7] ta
addres	s : 2H	
D0	brake1[0]	Drive waveform setting[0] brake1
D1	brake1[1]	Drive waveform setting[1] brake1
D2	brake1[2]	Drive waveform setting[2] brake1
D3	brake1[3]	Drive waveform setting[3] brake1
D4	brake1[4]	Drive waveform setting[4] brake1
D5	brake1[5]	Drive waveform setting[5] brake1
D6	brake1[6]	Drive waveform setting[6] brake1
D7	brake1[7]	Drive waveform setting[7] brake1
addres	s : 3H	
D0	tb[0]	Drive waveform setting[0] tb
D1	tb[1]	Drive waveform setting[1] tb
D2	tb[2]	Drive waveform setting[2] tb
D3	tb[3]	Drive waveform setting[3] tb
D4	tb[4]	Drive waveform setting[4] tb
D5	tb[5]	Drive waveform setting[5] tb
D6	tb[6]	Drive waveform setting[6] tb
D7	tb[7]	Drive waveform setting[7] tb

Bit	BIT Name	Function				
addres	s : 4H					
D0	brake2[0]	Drive waveform setting[0] brake2				
D1	brake2[1]	Drive waveform setting[1] brake2				
D2	brake2[2]	Drive waveform setting[2] brake2				
D3	brake2[3]	Drive waveform setting[3] brake2				
D4	brake2[4]	Drive waveform setting[4] brake2				
D5	brake2[5]	Drive waveform setting[5] brake2				
D6	brake2[6]	Drive waveform setting[6] brake2				
D7	brake2[7]	Drive waveform setting[7] brake2				
addres	s : 5H					
D0	cnt[0]	Drive time count setting[0]				
D1	cnt[1]	Drive time count setting[1]				
D2	cnt[2]	Drive time count setting[2]				
D3	cnt[3]	Drive time count setting[3]				
D4	cnt[4]	Drive time count setting[4]				
D5	cnt[5]	Drive time count setting[5]				
D6	cnt[6]	Drive time count setting[6]				
D7	cnt[7]	Drive time count setting[7]				
addres	s : 6H					
D0	cnt[8]	Drive time count setting[8]				
D1	cnt[9]	Drive time count setting[9]				
D2	cnt[10]	Drive time count setting[10]				
D3	cnt[11]	Drive time count setting[11]				
D4	cnt[12]	Drive time count setting[12]				
D5	cnt[13]	Drive time count setting[13]				
D6	cnt[14]	Drive time count setting[14]				
D7	cnt[15]	Drive time count setting[15]				
addres	s : 7H					
D0	cntck[0]	Drive time basic cycle setting[0]				
D1	cntck[1]	Drive time basic cycle setting [1]				
D2	cntck[2]	Drive time basic cycle setting [2]				
D3	osc[0]	Internal CLK basic cycle setting[0]				
D4	osc[1]	Internal CLK basic cycle setting [1]				
D5	osc[2]	Internal CLK basic cycle setting [2]				
D6	pb	Output logic setting b				
D7	ра	Output logic setting a				

Bit	BIT Name	Function
addres		
D0	cntout[0]	Drive time count value output[0]
D1	cntout[1]	Drive time count value output[1]
D2	cntout[2]	Drive time count value output[2]
D3	cntout[3]	Drive time count value output[3]
D4	cntout[4]	Drive time count value output[4]
D5	cntout[5]	Drive time count value output[5]
D6	cntout[6]	Drive time count value output[6]
D7	cntout[7]	Drive time count value output[7]
addres	s : 9H	
D0	cntout[8]	Drive time count value output[8]
D1	cntout[9]	Drive time count value output[9]
D2	cntout[10]	Drive time count value output[10]
D3	cntout[11]	Drive time count value output[11]
D4	cntout[12]	Drive time count value output[12]
D5	cntout[13]	Drive time count value output[13]
D6	cntout[14]	Drive time count value output[14]
D7	cntout[15]	Drive time count value output[15]
addres	s : AH	
D0	initEXT	After initial sequence, Hi output
D1	EXT	Hi output while normal sequence, Lo output at the stop mode
D2	TEST	
D3	TEST	
D4	TEST	
D5	TEST	
D6	TEST	
D7	TEST	
addres	s : BH	1
D0	TEST	
D1	TEST	
D2	TEST	
D3	TEST	
D4	TEST	
D5	TEST	
D6	TEST	
D7	TEST	
addres		
D0	TEST	
D1	TEST	
D2	TEST	
D3	TEST	
D4	TEST	
D5	TEST	
D6	TEST	
D7	TEST	

OInternal CLK basic cycle setting [osc] Internal CLK 1 cycle = 66.67nsec(typ)

Magnificati on	Internal CLK cycle number						
3'b000	1	3'b010	3	3'b100	5	3'b110	7
3'b001	2	3'b011	4	3'b101	6	3'b111	8

ODrive waveform [ta, brake1, tb, brake2]

	Osc		Osc		Osc		Osc
Time setting	Cycle						
	number		number		number		number
8'b0000_0000	1	8'b0100_0000	64	8'b1000_0000	128	8'b1100_0000	192
8'b0000_0001	1	8'b0100_0001	65	8'b1000_0001	129	8'b1100_0001	193
8'b0000_0010	2	8'b0100_0010	66	8'b1000_0010	130	8'b1100_0010	194
8'b0000_0011	3	8'b0100_0011	67	8'b1000_0011	131	8'b1100_0011	195
8'b0011_1101	61	8'b0111_1101	125	8'b1101_1101	189	8'b1111_1101	253
8'b0011_1110	62	8'b0111_1110	126	8'b1101_1110	190	8'b1111_1110	254
8'b0011_1111	63	8'b0111_1111	127	8'b1101_1111	191	8'b1111_1111	255

ODrive time basic cycle setting [cntck]

Magnificati	Cycle	Magnificati	Cycle	Magnificati	Cycle	Magnificati	Cycle
on	number	on	number	on	number	on	number
3'b000	1	3'b010	4	3'b100	15	3'b110	64
3'b001	2	3'b011	8	3'b101	32	3'b111	127

OMacro direction setting while initial sequence [initB] ((Total count number) = (cntck) × (initB))

count	Cntck cycle						
setting	number	setting	number	setting	number	setting	number
3'b000	1	3'b010	4	3'b100	15	3'b110	64
3'b001	2	3'b011	8	3'b101	32	3'b111	127

ODrive time count setting [cnt] ((Total Drive count number) = (cntck) × (cnt))

count setting	Cntck cycle	count setting	Cntck cycle	count	Cntck cycle	count	Cntck
	number		number	setting	number	setting	cycle number
16'h0000	1	16'h4000	16384	16'h8000	32768	16'hC000	49152
16'h0001	1	16'h4001	16385	16'h8001	32769	16'hC001	49153
16'h0002	2	16'h4002	16386	16'h8002	32770	16'hC002	49154
16'h0003	3	16'h4003	16387	16'h8003	32771	16'hC003	49155
16'h3FFD	16381	16'h7FFD	32765	16'hBFFD	49149	16'hFFFD	65533
16'h3FFE	16382	16'h7FFE	32766	16'hBFFE	49150	16'hFFFE	65534
16'h3FFF	16383	16'h7FFF	32767	16'hBFFF	49151	16'hFFFF	65535

(Ex.) In case, setting cntck[2:0] = 3'b001, cnt[15:0] = 16'h8000 cntck × cnt= 2 × 32768

= 65536count

= 851.968msec (In case of setting a cycle = 13usec)

I/O Peripheral Circuit

1) Pull up resistance of SDA terminal

SDA is NMOS open drain, so requires pull up resistance. As for this resistance value (R_{PU}), select an appropriate value to this resistance value from micro-controller V_{IL} , I_L , and $V_{OL} - I_{OL}$ characteristics of this IC. If R_{PU} is large, action frequency is limited. The smaller the R_{PU} , the larger the consumption current at action.

2) Maximum value of R_{PU}

The maximum value of R_{PU} is determined by the following factors.

- (I) SDA rise time to be determined by the capacity (CBUS) of BUS line of R_{PU} and SDA should be tR or below. And AC timing should be satisfied even when SDA rise time is late.
- (II) The BUS electric potential V₁ to be determined by input leak total (IL) of device connected to BUS at output of "H" to SDA BUS and RPU should sufficiently secure the input "H" level (VIH) of micro-controller and driver including recommended noise margin 0.2VCC. VCC - I_L × R_{PU} - 0.2 × VCC \ge V_{IH}

$$\therefore R_{PU} \leq 0.8 \times VCC - V_{IH}$$

Example.) VCC = 3V, I_L=10µA, V_{IH} = 0.7 × VCC from ① $R_{PU} \leq \frac{0.8 \times 3 - 0.7 \times 3}{10 \times 10^{-6}} = 30k\Omega$

Fig.6 2 wire Serial Interface 1

3) Minimum value of R_{PU}

The minimum value of R_{PU} is determined by the following factors.

(I) When IC outputs LOW, it should be satisfied that V_{OLMAX} = 0.4V, and I_{OLMAX} = 3mA.

$$\frac{\text{VCC-V}_{\text{OL}}}{\text{R}_{\text{PU}}} \leq \text{I}_{\text{OL}}$$

(II) V_{OLMAX} = 0.4V should secure the input "L" level (VIL) of micro-controller and driver including recommended noise margin 0.1VCC.

·····(2)

 $V_{OLMAX} \leq VIL-0.1 \times VCC$

Ex.) VCC = 3V, V_{OL} =0.4V, I_{OL} = 3mA, micro-controller, driver V_{IL} = 0.3 × VCC

$$\begin{split} \mathsf{R}_{\mathsf{PU}} & \geq \frac{3 - 0.4}{3 \times 10^{-3}} = 867[\Omega] \\ \mathsf{And} \; \mathsf{V}_{\mathsf{OL}} = 0.4[\mathsf{V}], \; \mathsf{V}_{\mathsf{IL}} = 0.3 \times 3 = 0.9[\mathsf{V}] \\ \mathsf{Therefore, the condition (II) is satisfied.} \end{split}$$

4) Pull up resistance of SCL terminal

WHEN SCL control is made at CMOS output port, there is no need but in the case there is timing where SCL becomes "Hi-Z", add a pull up resistance. As for the pull up resistance, one of several k Ω to several ten k Ω is recommended in consideration of drive performance of output port of micro-controller.

Cautions on Micro-controller Connection

1) R_s

BH6456GUL

In the 2 wire Serial Interface, it is recommended that SDA port is of open drain input/output. However, when to use CMOS input / output of tri state to SDA port, inset a series resistance Rs between the pull up resistance Rpu and the SDA terminal of driver. This controls over current that occurs when PMOS of the micro-controller and NMOS of driver are turned ON simultaneously. Rs also plays the role of protection of SDA terminal against surge. Therefore, even when SDA port is open drain input/output, Rs can be used.

2) Maximum value of Rs

- The maximum value of Rs is determined by the following relations.
- (I) SDA rise time to be determined by the capacity (C_b) of BUS line of R_{pu} and SDA should be tR or below. And AC timing should be satisfied even when SDA rise time is late.
- (II) The BUS electric potential V₂ to be determined by R_{pu} and R_s at the moment when driver outputs "L" to SDA BUS should sufficiently secure the input "L" level (VIL) of micro-controller including recommended noise margin 0.1VCC.

Fig.9

$$\frac{(\text{VCC-V}_{\text{OL}}) \times \text{R}_{\text{S}}}{\text{R}_{\text{PU}} + \text{R}_{\text{S}}} + \text{V}_{\text{OL}} + 0.1 \times \text{VCC} \leq \text{V}_{\text{IL}}$$
$$\therefore \text{R}_{\text{S}} \leq \frac{\text{V}_{\text{IL}} - \text{V}_{\text{OL}} - 0.1 \times \text{VCC}}{1.1 \times \text{VCC-V}_{\text{IL}}} \times \text{R}_{\text{PU}} \qquad \cdots 3$$

Example) When VCC = 3V, V_{IL} = 0.3 × VCC, V_{OL} = 0.4V, R_{PU} = 20k Ω , from 3

$$\label{eq:Rs} \text{2 wire Serial Interface 3} \quad \mathsf{R}_{s} \ \leq \frac{0.3 \times 3 - 0.4 - 0.1 \times 3}{1.1 \times 3 - 0.3 \times 3} \times 20 \times 10^{3} = 1.67 [\text{k}\Omega]$$

3) Minimum value of R_S

The minimum value of Rs is determined by over current at BUS collision. When over current flows, noises in power source line, and instantaneous power failure of power source may occur. When allowable over current is defined as I, the following relation must be satisfied. Determine the allowable current in consideration of impedance of power source line in set and so forth. Set the over current to driver 10mA or below.

$$\frac{\text{VCC}}{\text{R}_{\text{s}}} \leq 1$$

Exampre) When VCC=3V, I=10mA, From ④

$$R_s \ge \frac{3}{10 \times 10^{-3}} = 300[\Omega]$$

Fig.10 2 wire Serial Interface 4

Operation Notes

1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings, such as the applied voltage (VCC) or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded.

2) Storage temperature range (Tstq)

As long as the IC is kept within this range, there should be no problems in the IC's performance. Conversely, extreme temperature changes may result in poor IC performance, even if the changes are within the above range.

3) Power supply and wiring

Be sure to connect the power terminals outside the IC. Do not leave them open. Because a return current is generated by a counter electromotive force of the motor, take necessary measures such as putting a Capacitor between the power source and the ground as a passageway for the regenerative current. Be sure to connect a Capacitor of proper capacitance $(0.1\mu F$ to $10\mu F$) between the power source and the ground at the foot of the IC, and ensure that there is no problem in properties of electrolytic Capacitors such as decrease in capacitance at low temperatures. When the connected power source does not have enough current absorbing capability, there is a possibility that the voltage of the power source line increases by the regenerative current an exceeds the absolute maximum rating of this product and the peripheral circuits.

Therefore, be sure to take physical safety measures such as putting a zener diode for a voltage clamp between the power source an the ground.

4) Ground terminal and wiring

The potential at GND terminals should be made the lowest under any operating conditions. Ensure that there are no terminals where the potentials are below the potential at GND terminals, including the transient phenomena. The motor ground terminals RNF and PGND, and the small signal ground terminal GND are not interconnected with one another inside the IC. It is recommended that you should isolate the large-current RNF pattern and PGND pattern from the small-signal GND pattern, and should establish a one-point grounding at a reference point of the set, to avoid fluctuation of small-signal G voltages caused by voltage changes due to pattern wire resistances and large currents. Also prevent the voltage variation of the ground wiring patterns of external components. Use short and thick power source and ground wirings to ensure low impedance.

5) Thermal design

Use a proper thermal design that allows for a sufficient margin of the power dissipation (Pd) at actual operating conditions.

6) Pin short and wrong direction assembly of the device

Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins are shorted together or are shorted to other circuit's power lines.

7) Avoiding strong magnetic field

Malfunction may occur if the IC is used around a strong magnetic field.

8) ASO

Ensure that the output transistors of the motor driver are not driven under excess conditions of the absolute maximum ratings and ASO.

9) TSD (Thermal Shut Down) circuit

If the junction temperature (Tjmax) reaches 150°C, the TSD circuit will operate, and the coil output circuit of the motor will open. There is a temperature hysterics of approximately 25°C. The TSD circuit is designed only to shut off the IC in order to prevent runaway thermal operating. It is not designed to protect the IC or guarantee its operation. The performance of the IC's characteristics is not guaranteed and it is recommended that the device is replaced after the TSD is activated.

10) Regarding the input pin of the IC

This monolithic IC contains P^+ isolation and P substrate layers between adjacent elements to keep them isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows:

When GND > Pin A, the P-N junction operates as a parasitic diode.

When GND > Pin B, the P-N junction operates as a parasitic diode and transistor.

Parasitic elements can occur inevitably in the structure of the IC. The operation of parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic elements operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.

Fig.11 Example of Simple IC Architecture

Ordering Information

	Notes
	or reproduction of this document, in part or in whole, is permitted without the OHM Co.,Ltd.
The content	specified herein is subject to change for improvement without notice.
"Products").	specified herein is for the purpose of introducing ROHM's products (hereinafte If you wish to use any such Product, please be sure to refer to the specifications e obtained from ROHM upon request.
illustrate the	application circuits, circuit constants and any other information contained hereir standard usage and operations of the Products. The peripheral conditions mus account when designing circuits for mass production.
However, sh	vas taken in ensuring the accuracy of the information specified in this document would you incur any damage arising from any inaccuracy or misprint of such ROHM shall bear no responsibility for such damage.
examples of implicitly, any other parties	I information specified herein is intended only to show the typical functions of and application circuits for the Products. ROHM does not grant you, explicitly o y license to use or exercise intellectual property or other rights held by ROHM and a ROHM shall bear no responsibility whatsoever for any dispute arising from the echnical information.
equipment o	s specified in this document are intended to be used with general-use electronic r devices (such as audio visual equipment, office-automation equipment, commu- ces, electronic appliances and amusement devices).
The Products	s specified in this document are not designed to be radiation tolerant.
	I always makes efforts to enhance the quality and reliability of its Products, a fail or malfunction for a variety of reasons.
against the p failure of any shall bear no	are to implement in your equipment using the Products safety measures to guard cossibility of physical injury, fire or any other damage caused in the event of the Product, such as derating, redundancy, fire control and fail-safe designs. ROHM presponsibility whatsoever for your use of any Product outside of the prescribed in accordance with the instruction manual.
system whic may result in instrument, t controller or of the Produ	s are not designed or manufactured to be used with any equipment, device o h requires an extremely high level of reliability the failure or malfunction of which a direct threat to human life or create a risk of human injury (such as a medica transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- other safety device). ROHM shall bear no responsibility in any way for use of any first for the above special purposes. If a Product is intended to be used for any purpose, please contact a ROHM sales representative before purchasing.
be controlled	to export or ship overseas any Product or technology specified herein that may d under the Foreign Exchange and the Foreign Trade Law, you will be required to nse or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/